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Abstract. For optimization problems with nonlinear constraints, linearly constrained Lagran-
gian (LCL) methods solve a sequence of subproblems of the form “minimize an augmented Lagrangian
function subject to linearized constraints”. Such methods converge rapidly near a solution but may
not be reliable from arbitrary starting points. The well known software package MINOS has proven
effective on many large problems. Its success motivates us to propose a variant of the LCL method
that possesses three important properties: it is globally convergent, the subproblem constraints are
always feasible, and the subproblems may be solved inexactly.

The new algorithm has been implemented in Matlab, with the option to use either the MINOS
or SNOPT Fortran codes to solve the linearly constrained subproblems. Only first derivatives are
required. We present numerical results on a nonlinear subset of the COPS, HS, and CUTE test
problems, which include many large examples. The results demonstrate the robustness and efficiency
of the stabilized LCL procedure.
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1. Introduction. For optimization problems with nonlinear constraints, linearly
constrained Lagrangian methods (LCL methods) solve a sequence of subproblems that
minimize an augmented Lagrangian function subject to linearizations of the problem
constraints. (Typically some of the constraints are already linear, and some are simple
bounds on the variables. They are included verbatim in the subproblems.) Existing
LCL methods converge rapidly near a solution but sometimes may not converge from
arbitrary starting points. (They might not be globally convergent.) Nevertheless, the
well known software package MINOS [34] employs an LCL method and has proven
effective on many problems (large and small), especially within the GAMS [8] and
AMPL [19] environments. It is widely used in industry and academia. Its success
motivates us to propose an LCL-like method for which global convergence to a local
minimizer or a stationary point can be proved under standard assumptions.

Our globally convergent LCL algorithm, henceforth referred to as stabilized LCL
(sLCL), solves a sequence of linearly constrained subproblems as just described. Each
subproblem minimizes an augmented Lagrangian function within a linear manifold
that describes a current approximation to the nonlinear constraints (including any
linear constraints and bounds). This manifold is nominally a linearization of the
constraint space but may be a relaxed (i.e., larger) space at any stage, particularly
during early iterations. Few conditions are imposed on the nature of the subprob-
lem solutions; consequently, the subproblems may be solved with any of a variety of
optimization routines for linearly constrained problems, providing much flexibility.
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In addition to global convergence, the sLCL method possesses two important
properties: the subproblems are always feasible, and they may be solved inexactly.
In the method used by MINOS, there is no guarantee that the subproblems will be
feasible, and the criteria for their early termination is heuristic. Our method may
be regarded as a generalization of sequential augmented Lagrangian methods (see,
for example, [25, 1, 18]). The theory we develop provides a framework that unifies
Robinson’s LCL method [38] with the bound-constrained Lagrangian (BCL) method
used, for example, by LANCELOT [11]. In the context of our theory, the proposed
algorithm is actually a continuum of methods, with Robinson’s LCL method and
the BCL method at opposite ends of a spectrum. The sLCL method exploits this
relationship, preserving the fast local convergence properties of LCL methods while
inheriting the global convergence properties of BCL methods. This connection is
explored in more detail by Friedlander [20].

Our intent is to develop a method that is effective in practice for large-scale
problems, and is also based on sound theory. We implemented the sLCL method as
a Matlab program that calls either the reduced-gradient part of MINOS [33] or the
sequential quadratic programming code SNOPT [24] to solve the linearly constrained
subproblems. These solvers are most efficient on problems with few degrees of freedom.
Also, they use only first derivatives, and consequently our implementation requires
only first derivatives. Following the theoretical development, we give computational
results and a comparison with MINOS on a set of nontrivial problems.

1.1. The optimization problem. The proposed method solves nonlinearly
constrained optimization problems of the form

(GNP) minimize
x∈ �

n

f(x)

subject to c(x) = 0

x ≥ 0,

where f :
� n 7→ �

is a linear or nonlinear objective function and c :
� n 7→ � m is a

vector of nonlinear constraint functions. We assume that the constraints of (GNP)
are feasible. In section 4.3 we explain how the proposed algorithm reveals infeasible
constraints and discuss properties of the points to which it converges. In section 5 we
consider a formulation with more general constraints (for which our implementation
and other solvers are designed).

One of the strengths of our method is that it does not explicitly require second-
order information. However, the fast convergence rate of the algorithm relies on
sufficient smoothness of the nonlinear functions, indicated by the existence of sec-
ond derivatives. Second derivatives could be used by the subproblem solver if they
were available, thus accelerating the subproblem solution process and changing the
properties of the solutions obtained for (GNP). We discuss this further in section 4.4.

1.2. The LCL approach. The acronyms LCL and BCL are new. Methods
belonging to the LCL class have previously been referred to as sequential linearized
constraint (SLC) methods (cf. [25, 35]). The term SLC was chosen for compatibil-
ity with the terms sequential quadratic programming (SQP) and sequential linear
programming (SLP). Those methods also sequentially linearize the constraints. The
term linearly constrained Lagrangian, however, emphasizes that the Lagrangian itself
(really the augmented Lagrangian) is used in the subproblems and not a linear or
quadratic approximation. Moreover, there is a useful relationship (which we exploit)
between LCL and BCL methods, and this is hinted at by the nomenclature.
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The first LCL methods were proposed independently in 1972. Robinson [38] and
Rosen and Kreuser [41] describe similar algorithms based on minimizing a sequence of
Lagrangian functions subject to linearized constraints. Robinson is able to prove that,
under suitable conditions, the sequence of subproblem solutions converges quadrati-
cally to a solution of (GNP). A practical strength is that efficient large-scale methods
exist for the solution of the linearly constrained subproblems formed at each iteration.
Any suitable subproblem solver may be called as a black box.

1.3. Other work on stabilizing LCL methods. Other approaches to stabi-
lizing LCL algorithms include two-phase methods proposed by Rosen [40] and Van
Der Hoek [42]. In these approaches, a Phase 1 problem is formed by moving the non-
linear constraints into the objective by means of a quadratic penalty function. The
solution of the Phase 1 problem is used to initialize Robinson’s method (Phase 2).
With a sufficiently large penalty parameter, the Phase 1 solution will yield a starting
point that allows Robinson’s method to converge quickly to a solution. These two-
phase methods choose the penalty parameter arbitrarily, however, and do not deal
methodically with infeasible linearizations.

In 1981, Best et al. [2] describe a variant of the two-phase method whereby the
Phase 1 penalty parameter is gradually increased by repeated return to the Phase 1
problem if the Phase 2 iterations are not converging. This two-phase method differs
further from Rosen’s and Van Der Hoek’s methods in that the Phase 2 iterations
involve only those constraints identified as active by the Phase 1 problem. The authors
are able to retain local quadratic convergence of the Phase 2 LCL iterations while
proving global convergence to a stationary point. A drawback of their method is that
it requires a fourth-order penalty term to ensure continuous second derivatives of the
penalty objective. This requirement may introduce significant numerical difficulty for
the solution of the Phase 1 problem (though probably a quadratic-penalty term would
suffice in practice).

Both two-phase methods share the disadvantage that the Phase 1 penalty prob-
lems need to be optimized over a larger subspace than the subsequent LCL phase.
We seek a method that retains all linearized constraints as part of each subproblem
(one advantage being that it keeps the number of degrees of freedom small). We also
allow the subproblems to predict the set of active constraints, as in Robinson’s 1972
method. In particular, the active set for the final subproblem is taken to be the active
set for the solution of the original problem.

1.4. Definitions and assumptions. Unless otherwise specified, the function
‖v‖ represents the Euclidean norm of a vector v. With vector arguments, the functions
min(·, ·) and max(·, ·) are defined component-wise.

We define the augmented Lagrangian function corresponding to (GNP) as

L(x, y, ρ) = f(x)− yTc(x) + 1
2ρ‖c(x)‖22, (1.1)

where x, the m-vector y, and the scalar ρ are independent variables. This function is
particularly important for our analysis. When yk and ρk are fixed, we often use the
shorthand notation Lk(x) ≡ L(x, yk, ρk).

Let g(x) denote the gradient of the objective function f(x), and let J(x) denote
the Jacobian of c(x): a matrix whose i-th row is the gradient of [c(x)]i, where [·]i
refers to the ith component of a vector. Let H(x) and Hi(x) be the Hessian matrices
of f(x) and [c(x)]i respectively, and define

ŷ(x, y, ρ) = y − ρc(x). (1.2)
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The derivatives of L with respect to x may be written as follows:

∇xL(x, y, ρ) = g(x)− J(x)Tŷ(x, y, ρ) (1.3)

∇2
xxL(x, y, ρ) = H(x)−

m∑

i=1

[ŷ(x, y, ρ)]iHi(x) + ρJ(x)TJ(x). (1.4)

We assume that problem (GNP) is feasible and has at least one point (x∗, y∗, z∗)
that satisfies the first-order Karush-Kuhn-Tucker (KKT) conditions.

Definition 1.1 (First-Order KKT Conditions). A triple (x∗, y∗, z∗) is a first-
order KKT point for (GNP) if for any ρ ≥ 0 all of the following hold:

c(x∗) = 0 (1.5a)

∇xL(x∗, y∗, ρ) = z∗ (1.5b)

min(x∗, z∗) = 0. (1.5c)

KKT conditions are normally defined in terms of the Lagrangian function, not
the augmented Lagrangian function used in (1.5b). We take the perspective that the
Lagrangian is just a special case of the augmented Lagrangian (with ρ = 0). Our
definition is not more restrictive: if (1.5) holds for ρ = 0 (the usual case) then it holds
for all ρ ≥ 0 because c(x∗) = 0.

Note that (1.5c) implies conditions that are normally defined explicitly:

x∗ ≥ 0 (1.6a)

z∗ ≥ 0, (1.6b)

where z∗ is the vector of Lagrange multipliers corresponding to the bound constraints
(often referred to as reduced costs in the linear programming literature). The symbol
x∗ is used in two senses: as a limit point of the sequence {xk}, and as the primal
solution of (GNP). The context distinguishes between the two cases.

Let η∗ > 0 and ω∗ > 0 be specified as primal and dual convergence tolerances.
We regard the point (x, y, z) as an acceptable approximate solution of (GNP) if it
satisfies (1.5) to within these tolerances:

‖c(x)‖ ≤ η∗ (1.7a)

∇xL(x, y, ρ) = z (1.7b)

‖min(x, z)‖∞ ≤ ω∗. (1.7c)

Note that (1.7c) relaxes the nonnegativity conditions (1.6) by the same tolerance ω∗.
In practice, we might choose to relax (1.6a) to x ≥ −δ∗e for some δ∗ > 0, where e is
a vector of ones. However, we ignore this detail for now.

Let I be the index set I = {j ∈ 1, . . . , n | [x∗]j > 0} corresponding to inactive
bounds at x∗. We define

ĝ(x) ≡ [g(x)]I and Ĵ(x)

to be the elements of g(x) and the columns of J(x) corresponding to the indices in I.
Further notation follows (including some already introduced):
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(x, y, z) primal variables, dual variables, and reduced costs for (GNP),

(x∗, y∗, z∗) optimal variables for (GNP),

(xk, yk, zk) the kth estimate of (x∗, y∗, z∗),

(x∗
k,∆y∗

k, z∗k) solution of the kth subproblem,

fk, gk, ck, Jk functions and gradients evaluated at xk,

ck(x) ck + Jk(x− xk), the linearization of c(x) at xk,

Lk(x) L(x, yk, ρk), the augmented Lagrangian with fixed yk and ρk,

ŷ(x, y, ρ) y − ρc(x) as in (1.2)–(1.4).

For the theoretical development of our method, it is convenient to use the (familiar)
augmented Lagrangian for the objective of the subproblems. The dual solutions of the
subproblems then converge to 0 (not to y∗) as k →∞. Hence our notation ∆y∗

k. (As
mentioned in section 7.2, a modified augmented Lagrangian is desirable in practice,
and the dual solutions then converge to y∗.)

The algorithms we discuss are structured around major and minor iterations.
Each major iteration solves a subproblem and generates an element of the sequence
{(xk, yk, zk)}. Under certain (desirable) circumstances, this sequence converges to a
solution (x∗, y∗, z∗). For each major iteration k, there is a corresponding set of minor
iterations converging to (x∗

k,∆y∗
k, z∗k), the solution of the current subproblem. In our

development and analysis of a stabilized LCL method we are primarily concerned with
the “outer”-level algorithm, comprising the major iterations. Unless stated otherwise,
“iterations” refers to major iterations.

Assumption 1.2. The functions f and c are twice continuously differentiable.

Assumption 1.3. The sequence of iterates {x∗
k} lies in a closed and bounded set

B ⊂ � n. (This guarantees that the sequence has a convergent subsequence.)

Assumption 1.4. The matrix Ĵ(x∗) has full row rank at every limit point x∗
of the sequence {x∗

k}. (This is commonly known as the linear independence con-
straint qualification (LICQ); see Mangasarian [29] or more recently Nocedal and
Wright [35].)

2. The canonical LCL method. Algorithm 1 outlines what we regard to be
a canonical LCL method for solving problem (GNP). It solves a sequence of linearly
constrained subproblems that are parameterized by the latest estimates (xk, yk) and
a fixed penalty parameter ρ̄ (which may be zero):

(LCk) minimize
x

Lk(x)

subject to ck(x) = 0

x ≥ 0.

The linear constraints are defined by ck(x) = c(xk) + J(xk)(x − xk), the constraint
linearization at xk, and Lk(x) = L(x, yk, ρk) is the augmented Lagrangian with fixed
yk and ρk ≡ ρ̄. The solution of (LCk) is a triple (x∗

k,∆y∗
k, z∗k) that satisfies the

first-order KKT conditions

ck(x) = 0 (2.1a)

∇Lk(x)− JT
k∆y = z (2.1b)

min(x, z) = 0. (2.1c)
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Algorithm 1: Canonical LCL.

Input: x0, y0, z0

Output: x∗, y∗, z∗

[Initialize parameters]
Set the penalty parameter ρ0 = ρ̄ ≥ 0.
Set positive convergence tolerances ω∗, η∗ ¿ 1;

k ← 0;
converged ← false;
repeat

[Solve the linearly constrained subproblem (LCk)]
Find a point (x∗

k, ∆y∗
k, z∗

k) that satisfies (2.1);
1 If there is more than one such point, choose (x∗

k, ∆y∗
k, z∗

k) closest in norm
to (xk, 0, zk);

[Update solution estimates]
xk+1 ← x∗

k, yk+1 ← yk + ∆y∗
k, zk+1 ← z∗

k;

[Test convergence]
if (xk+1, yk+1, zk+1) satisfies (1.7) then converged ← true;

ρk ← ρ̄; [keep ρk fixed]
k ← k + 1;

until converged;
x∗ ← xk, y∗ ← yk, z∗ ← zk;
return x∗, y∗, z∗;

The original LCL method of Robinson [38] is equivalent to Algorithm 1 with ρ̄ = 0.
A positive penalty parameter was introduced in the software package MINOS [34] to
improve convergence from difficult starting points. Empirically, it has proven a helpful
addition to Robinson’s method for many problems, but sometimes it is ineffective. A
theoretical understanding of when and how to modify ρk has been lacking.

For any set of parameters xk, yk, and ρk there may be many points (x∗
k,∆y∗

k, z∗k)
that satisfy (2.1). Step 1 of Algorithm 1 (the line labeled 1) requires that the chosen
point be closest in norm to (xk, 0, zk). This step is found in the original formulation
of Robinson’s method, where it is used in the convergence proof [38, Theorem 2], and
we will continue to use it in our formulation of the sLCL method. Such a requirement
cannot be verified in practice, but it may be argued that, depending on the choice of
subproblem solver, the requirement may often be satisfied.

3. An Elastic LC Subproblem. We recognize two particular causes of failure
in the canonical LCL method:

• The linear constraints in (LCk) may be infeasible for some xk, so that xk+1

may not be well defined.
• A near-singular Jacobian Jk might lead to an arbitrarily large ‖x∗

k − xk‖
regardless of the values of yk and ρk in the subproblem objective. (In As-
sumption 1.4 we only assume nonsingularity of the Jacobian at limit points.)

To remedy both deficiencies we modify the linearized constraints, allowing some
degree of flexibility in their satisfaction. We introduce nonnegative elastic variables
v and w into the constraints, with a penalty on these variables in the subproblem
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objective. The resulting elastic subproblem is always feasible:

(ELCk) minimize
x,v,w

Lk(x) + σkeT(v + w)

subject to ck(x) + v − w = 0

x, v, w ≥ 0.

The solution of (ELCk) is a 5-tuple (x∗
k, v∗

k, w∗
k,∆y∗

k, z∗k) that satisfies the first-order
KKT conditions

ck(x) + v − w = 0 (3.1a)

∇Lk(x)− JT
k∆y = z (3.1b)

min(x, z) = 0 (3.1c)

min(v, σke−∆y) = 0 (3.1d)

min(w, σke + ∆y) = 0. (3.1e)

The last two conditions (3.1d)–(3.1e) imply that their arguments are nonnegative,
and so σke ≥ ∆y ≥ −σke. This pair of inequalities can be conveniently restated as

‖∆y‖∞ ≤ σk. (3.2)

The sLCL method is based on subproblem (ELCk) with judicious changes to ρk and
σk for each k. We find later that the bound (3.2) is crucial for the global convergence
analysis of the method.

3.1. The `1 penalty function. The term σkeT(v+w) is the `1 penalty function.
Together with the constraints v, w ≥ 0, it is equivalent to a penalty on ‖v − w‖1
(see [26]). Eliminating v − w, we see that the elastic subproblem (ELCk) can be
stated as

(ELC′
k) minimize

x
Lk(x) + σk‖ck(x)‖1

subject to x ≥ 0,

with solution (x∗
k, z∗k). This immediately reveals the stabilized LCL method’s intimate

connection with the augmented Lagrangian function and BCL methods. Far from a
solution, the `1 penalty term σk‖ck(x)‖1 gives the method an opportunity to deviate
from the constraint linearizations and reduce Lk(x) more than otherwise. Near a
solution, it keeps the iterates close to the linearizations. Two extreme cases are of
interest:

Recovering the BCL subproblem. Set σk = 0. Then (ELCk) and (ELC′
k)

reduce to the equivalent bound-constrained minimization problem

(BCk) minimize
x

Lk(x)

subject to x ≥ 0.

Subproblem (BCk) is used by BCL methods (e.g., Hestenes [27], Powell [37], Bert-
sekas [1], Conn et al. [10]) and in particular by LANCELOT [11].
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Recovering the LCL subproblem. The `1 penalty function is exact. If the
linearization is feasible and σk is larger than a certain threshold, v and w are likely
to be zero and the minimizers of the elastic problem (ELCk) will coincide with the
minimizers of the inelastic problem (LCk). Exact penalty functions have been studied
by [26, 1, 17] among others. See Conn et al. [13] for a more recent discussion.

We are particularly interested in this feature when the iterates generated by the
sLCL algorithm are approaching a solution (x∗, y∗, z∗). Recovering the canonical LCL
subproblem ensures that sLCL inherits the fast local convergence properties of the
canonical LCL algorithm. In section 4.2.2 we give conditions under which the elastic
variables will be forced to zero.

3.2. Early termination of the subproblems. Poor values of xk, yk, or ρk

may imply subproblems whose accurate solutions are far from a solution of (GNP).
We therefore terminate subproblems early by relaxing (3.1c)–(3.1e) by an amount ωk.
However, we enforce nonnegativity on x, v, w (also implied by (3.1c)–(3.1e)):

x, v, w ≥ 0 (3.3a)

ck(x) + v − w = 0 (3.3b)

∇Lk(x)− JT
k∆y = z (3.3c)

‖min(x, z)‖∞ ≤ ωk (3.3d)

‖min(v, σk −∆y)‖∞ ≤ ωk (3.3e)

‖min(w, σk + ∆y)‖∞ ≤ ωk. (3.3f)

Note that (3.3e) and (3.3f) imply

‖∆y‖∞ ≤ σk + ωk. (3.4)

As discussed in connection with (1.6a), in practice (3.3a) and/or (3.3b) is typically
relaxed by a fixed tolerance δ.

3.3. Relation to S`1QP and SNOPT. Subproblems (ELCk) and (ELC′
k) are

reminiscent of the QP subproblems arising in the S`1QP method of Fletcher [17] and
the SQP method of SNOPT [24]. The main difference is that the QP objectives are
quadratic approximations to the Lagrangian (not the Lagrangian itself, and not the
augmented Lagrangian).

In S`1QP, trust-region bounds are needed to ensure boundedness of ‖x∗
k − xk‖∞

and to permit the subproblem solution x∗
k to reduce the exact penalty function νf(x)+

‖c(x)‖1 for some (small enough) scalar ν. Also, second-order corrections are needed
to maintain rapid convergence of the major iterations (avoiding the Maratos effect
[30]).

In SNOPT, the QP subproblems are used to define search directions (∆x,∆y)
for the augmented Lagrangian L(x, y, ρk) regarded as a function of x = xk + α∆x
and y = yk + α∆y for some steplength α ∈ (0, 1]. The elastic slacks v and w are
initially absent but become a permanent part of the original problem (and the QP
subproblems) if the linearized constraints are infeasible at some xk, or if ‖yk‖ becomes
large. The net effect is that for problems whose constraints are infeasible, S`1QP
and SNOPT minimize the 1-norm of c(x), whereas sLCL minimizes the 2-norm (see
section 4.3).

In all three methods (S`1QP, SNOPT, and sLCL), the penalty term σkeT(v + w)
may be nonzero at a particular subproblem solution, indicating that some of the
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Algorithm 2: Stabilized LCL.

Input: x0, y0, z0

Output: x∗, y∗, z∗

[Initialize parameters]
Set σ > 1. Set constants τρ, τσ > 1. Set the initial penalty parameters ρ0 > 1
and σ0 À 1. Set positive convergence tolerances ω∗, η∗ ¿ 1. Set constants
α, β > 0 with α < 1;

k ← 0;
converged ← false;
repeat

1 Choose ωk ≥ ω∗ such that limk→∞ ωk = ω∗;
2 [Solve the linearly constrained subproblem (ELCk)]

Find a point (x∗
k, v∗

k, w∗
k, ∆y∗

k, z∗
k) that satisfies (3.3). If there is more than

one such point, choose one such that (x∗
k, ∆y∗

k, z∗
k) is closest in norm to

(xk, 0, zk);

3 if ‖c(x∗
k)‖ ≤ max(η∗, ηk) then

4 [Update solution estimates]
xk+1 ← x∗

k;
5 yk+1 ← yk + ∆y∗

k − ρkc(x∗
k); [≡ by(x∗

k, yk + ∆y∗
k, ρk)]

6 zk+1 ← z∗
k;

7 [Update penalty parameter and elastic weight]
ρk+1 ← ρk; [keep ρk]
σk+1 ←

1

ρk

min(1 + ‖∆y∗
k‖∞, σ)}; [reset σk]

8 [Test convergence]
if (xk+1, yk+1, zk+1) satisfies (1.7) then converged ← true;

9 ηk+1 ← ηk/ρβ
k+1

; [decrease ηk]

else
10 [Keep solution estimates]

xk+1 ← xk; yk+1 ← yk; zk+1 ← zk;

11 [Update penalty parameter and elastic weight]
ρk+1 ← τρρk; [increase ρk]
σk+1 ← σk/τσ; [decrease σk]

12 ηk+1 ← η0/ρα
k+1; [may increase or decrease ηk]

k ← k + 1;

until converged;
x∗ ← xk; y∗ ← yk; z∗ ← zk;
return x∗, y∗, z∗;

linearized constraints are not satisfied. Thus, the active linearized constraints may be
just a subset of the full set (cf. Fletcher [17, p. 32]). The global convergence properties
of sLCL do not require independent constraint gradients or bounded multipliers for
every subproblem. (These are required only at limit points of the sequence generated
by the method.)

4. The Stabilized LCL Algorithm. Algorithm 2 outlines the sLCL algorithm.
Its structure closely parallels the BCL algorithm described in Conn et al. [10]. Based
on the current primal infeasibility, each iteration of the algorithm is regarded as either
“successful” or “unsuccessful.” In the “successful” case, the solution estimates are
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updated by using information from the current subproblem solution. Otherwise, the
subproblem solutions are discarded, the current solution estimates are held fixed, and
the penalty parameter ρk is increased in an effort to reduce the primal infeasibility
in the next iteration. To prevent the linearized constraints from interfering with
the penalty parameter’s ability to reduce the primal infeasibility, the algorithm may
reduce the elastic penalty parameter σk. (A small value of σk encourages deviation
from the current constraint linearizations, which may be poor approximations to the
true constraints.)

The two salient features of this algorithm are that it is globally convergent and
asymptotically equivalent to the canonical LCL method. In section 4.1 we demon-
strate the global convergence properties of the algorithm by proving results analogous
to Lemma 4.3 and Theorem 4.4 in [10]. In section 4.2 we demonstrate that the al-
gorithm eventually reduces to the canonical LCL method and hence inherits that
method’s asymptotic convergence properties.

4.1. Global convergence properties. Let x∗ be any limit point of the se-
quence {x∗

k}. At all points x for which Ĵ(x) has full row rank we define the least-
squares multiplier estimate ỹ(x) as the solution of the following least-squares problem:

ỹ(x) ≡ arg min
y
‖ĝ(x)− Ĵ(x)Ty‖2. (4.1)

Note that the definitions of ĝ, Ĵ , and hence ỹ require a priori knowledge of the
bounds active at x∗. We emphasize that ỹ is used only as an analytical device and
its computation is never required. Assumption 1.4 guarantees the uniqueness of ỹ at
every limit point of the sequence {x∗

k}.
For the global analysis we assume that ω∗ = η∗ = 0.

4.1.1. Convergence of LC subproblem solutions. In this subsection we
prove that the sequence of LC subproblem solutions generated by Algorithm 2 con-
verges to a KKT point of (GNP).

We need the following lemma to bound the errors in the least-squares multiplier
estimates relative to ‖x∗

k−x∗‖, the error in x∗
k. The lemma simply demonstrates that

ỹ(x) is Lipschitz continuous in a neighborhood of x∗.

Lemma 4.1. Let {x∗
k}, k ∈ K be a sequence that converges to x∗ and suppose

that Assumptions 1.2 and 1.4 hold. Then there exists a positive constant α such that
‖ỹ(x∗

k)− ỹ(x∗)‖ ≤ α‖x∗
k − x∗‖ for all k ∈ K sufficiently large.

Proof. See Lemmas 2.1 and 4.4 of Conn et al. [9].

To prove the global convergence properties of Algorithm 2, we first describe the
properties of any limit point that the algorithm generates. We are not claiming (yet!)
that the algorithm is globally convergent, only that if it does converge, then the set of
limit points generated must satisfy some desirable properties. The following lemma
is adapted from Lemma 4.4 of [9].

Lemma 4.2. Suppose that Assumptions 1.2, 1.3, and 1.4 hold. Let {ωk} and
{ρk} be sequences of positive scalars, where ωk → 0. Let {xk} be any sequence of n-
vectors in B and {yk} be any sequence of m-vectors. Let {(x∗

k,∆y∗
k, z∗k)} be a sequence

of vectors satisfying (3.3a), (3.3c), and (3.3d). Let x∗ be any limit point of the
sequence {x∗

k}, and let K be the infinite set of indices associated with the corresponding
convergent subsequence. Set ŷk = ŷ(x∗

k, yk + ∆y∗
k, ρk), and y∗ = ỹ(x∗). The following

properties then hold:
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1. There are positive constants α1, α2, and M such that

‖ŷk − y∗‖ ≤ β1 ≡ α1ωk + M‖x∗
k − xk‖ ‖∆y∗

k‖+ α2‖x∗
k − x∗‖, (4.2)

ρk‖c(x∗
k)‖ ≤ β2 ≡ β1 + ‖∆y∗

k‖+ ‖yk − y∗‖, (4.3)

for all k ∈ K sufficiently large.
2. As k ∈ K gets large, if ‖∆y∗

k‖ → 0, or if ‖∆y∗
k‖ is bounded and ‖x∗

k−xk‖ → 0,
then

ŷk → y∗ and z∗k → z∗
def
=∇xL(x∗, y∗, 0).

3. If, in addition, c∗ = 0, then (x∗, y∗, z∗) is a first-order KKT point for (GNP).

Proof. From Assumption 1.4, Ĵ(x∗
k) has full row rank for all k ∈ K large enough.

The least-squares multiplier estimate ỹ(x∗
k) (4.1) therefore exists. For full-rank least-

squares problems in general, it is straightforward to show that the error in an approx-
imate solution is bounded by a finite multiple of the associated residual. Hence with
x = x∗

k in problem (4.1) and with y = ŷk as an approximate solution, we may write

‖ỹ(x∗
k)− ŷk‖ ≤

α1√
n
‖ĝ(x∗

k)− Ĵ(x∗
k)Tŷk‖ (4.4)

for some positive scalar α1.
We now show that ‖ĝ(x∗

k)− Ĵ(x∗
k)Tŷk‖ is bounded. By hypothesis, (x∗

k,∆y∗
k, z∗k)

satisfies (3.3c). Together with (1.3),

z∗k = ∇Lk(x∗
k)− JT

k∆y∗
k

= g(x∗
k)− J(x∗

k)T(yk − ρkc(x∗
k))− JT

k∆y∗
k

= g(x∗
k)− J(x∗

k)T
(
yk + ∆y∗

k − ρkc(x∗
k)
)

+
(
J(x∗

k)− Jk

)T
∆y∗

k

= g(x∗
k)− J(x∗

k)Tŷk +
(
J(x∗

k)− Jk

)T
∆y∗

k,

(4.5)

where ŷk
def
= ŷ(x∗

k, yk + ∆y∗
k, ρk) = y∗

k − ρkc(x∗
k). For k ∈ K large enough, x∗

k is suffi-
ciently close to x∗ so that [x∗

k]j > 0 if [x∗]j > 0. Therefore, (3.3d) and ωk → 0 imply
that min([x∗

k]j , [z
∗
k]j) = [z∗k]j , so that

‖[z∗k]I‖ ≤ ‖min(x∗
k, z∗k)‖, (4.6)

where I is the index set of inactive bounds at x∗, as defined in section 1.4. Because
x∗

k and z∗k both satisfy (3.3d), (4.6) implies that

‖[z∗k]I‖ ≤
√

n ωk. (4.7)

Combining (4.5) and (4.7), we obtain

‖ĝ(x∗
k)− Ĵ(x∗

k)Tŷk +
(
Ĵ(x∗

k)− Ĵk

)
T∆y∗

k‖ ≤
√

n ωk.

Also, because c is twice-continuously differentiable, J is Lipschitz continuous over B
and there exists a positive constant M such that ‖Ĵ(x∗

k) − Ĵk‖ ≤ M
√

n
α1
‖x∗

k − xk‖.
Hence, from the triangle and Cauchy-Schwartz inequalities, we have

‖ĝ(x∗
k)− Ĵ(x∗

k)Tŷk‖ ≤ ‖ĝ(x∗
k)− Ĵ(x∗

k)Tŷk +
(
Ĵ(x∗

k)− Ĵk

)T
∆y∗

k‖
+ ‖Ĵ(x∗

k)− Ĵk‖ ‖∆y∗
k‖

≤
√

n ωk + M

√
n

α1
‖x∗

k − xk‖ ‖∆y∗
k‖, (4.8)
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and so we have bounded the left-hand side as required.
We now derive (4.2). From the triangle inequality,

‖ŷk − y∗‖ ≤ ‖ỹ(x∗
k)− ŷk‖+ ‖ỹ(x∗

k)− y∗‖. (4.9)

Using inequality (4.8) in (4.4), we deduce that

‖ỹ(x∗
k)− ŷk‖ ≤ α1ωk + M‖x∗

k − xk‖‖∆y∗
k‖, (4.10)

and Lemma 4.1 implies that there exists a constant α2 such that

‖ỹ(x∗
k)− y∗‖ ≤ α2‖x∗

k − x∗‖, (4.11)

for all k ∈ K large enough (recall that y∗ ≡ ỹ(x∗)). Substituting (4.10) and (4.11)
into (4.9), we obtain ‖ŷk − y∗‖ ≤ β1 as stated in (4.2).

We now prove (4.3). From the definition of ŷk, rearranging terms yields

ρkc(x∗
k) = yk + ∆y∗

k − ŷk. (4.12)

Taking norms of both sides of (4.12) and using (4.2) yields

ρk‖c(x∗
k)‖ = ‖yk + ∆y∗

k − ŷk‖
= ‖yk − y∗ + y∗ − ŷk + ∆y∗

k‖
≤ ‖ŷk − y∗‖+ ‖yk − y∗‖+ ‖∆y∗

k‖
≤ β1 + ‖yk − y∗‖+ ‖∆y∗

k‖
≡ β2,

and so Part 1 of Lemma 4.2 is proved.
Now suppose that ‖∆y∗

k‖ → 0 as k ∈ K goes to infinity. Because {x∗
k} and {xk}

are in the compact set B, ‖x∗
k−xk‖ is bounded. From (4.2) and the fact that x∗

k → x∗
and ωk → 0, we conclude that ŷk → y∗ as k ∈ K goes to infinity. We also conclude
from the continuity of J on the compact set B that ‖J(x∗

k)− Jk‖ is bounded, so that

lim
k∈K
‖(J(x∗

k)− Jk)T∆y∗
k‖ = 0. (4.13)

On the other hand, suppose that ‖∆y∗
k‖ is uniformly bounded and that limk∈K ‖x∗

k −
xk‖ = 0. We then conclude from (4.2) that ŷk → y∗ as k ∈ K goes to infinity and
again (4.13) holds. Because limk∈K(x∗

k, ŷk) = (x∗, y∗), we have

g(x∗
k)− J(x∗

k)Tŷk → g∗ − JT
∗ y∗,

and so (4.5) and (4.13) together imply that

z∗k → z∗ ≡ ∇xL(x∗, y∗, 0) (4.14)

as k ∈ K goes to infinity. Thus we have proved Part 2 of Lemma 4.2.
Now suppose that

c∗ = 0. (4.15)

Each x∗
k and z∗k satisfies (3.3d). Then limk∈K(x∗

k, z∗k) = (x∗, z∗), and ωk → 0 implies

min(x∗, z∗) = 0. (4.16)
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Therefore, (4.14)–(4.16) imply that (x∗, y∗, z∗) satisfies (1.5) and so it is a first-order
KKT point for (GNP). Part 3 is thus proved, and the proof is complete.

The conclusions of Lemma 4.2 pertain to any sequence {(x∗
k,∆y∗

k, z∗k)} satisfying
the approximate first-order conditions (3.3). Algorithm 2 generates such a sequence
and also generates auxiliary sequences of scalars {ωk} and {ρk} in such a way as to
guarantee that the hypotheses of Lemma 4.2 hold. We demonstrate in Theorem 4.4
below that the condition of Part 3 of Lemma 4.2 holds. Therefore, every limit point
of the sequence {(x∗

k, ŷk, z∗k)} is a first-order KKT point for (GNP).

4.1.2. Convergence of ‖yk‖/ρk. Before laying out the global convergence prop-
erties of the sLCL algorithm, we need to show that if ρk → ∞ then the quotient
‖yk‖/ρk converges to 0. This property is required (and used by Conn et al. [9, 10])
in lieu of assuming that ‖yk‖ remains bounded.

Lemma 4.3. Suppose that ρk →∞ as k increases when Algorithm 2 is executed.
Then ‖yk‖/ρk → 0.

Proof. Define the sequence {k1, k2, k3 . . .} as the set of iterations that execute
Step 11 of Algorithm 2. Because the parameter ρk increases if and only if Step 11 is
executed, it is sufficient to show that ‖yki

‖/ρki
→ 0 as i→∞. The multiplier update

used in Step 4, together with the triangle inequality and (3.4), imply that for each ki,

‖yki
‖

ρki

=
‖yki−1 + ∆y∗

ki−1 − ρki−1c(x
∗
ki−1)‖

ρki

≤
‖∆y∗

ki−1‖
ρki

+
‖yki−1 − ρki−1c(x

∗
ki−1)‖

ρki

≤ σki−1 + ωki−1

ρki︸ ︷︷ ︸
(a)

+
‖yki−1 − ρki−1c(x

∗
ki−1)‖

ρki︸ ︷︷ ︸
(b)

.

(4.17)

Step 7 ensures that σ ≤ σ for all k, and because ωk → 0, term (a) goes to zero as
ρki
→ ∞. The construction of the forcing sequence ηk (Steps 9 and 12) satisfies the

requirements of [10, Lemma 4.2], where it is proven that term (b) goes to zero as
ρki
→∞. Therefore, (4.17) implies that ‖yki

‖/ρki
→ 0.

4.1.3. Main convergence result. With Lemmas 4.2 and 4.3 in hand, we are
now able to prove global convergence of the sLCL method.

Theorem 4.4 (Global convergence of limit points). Let {(x∗
k,∆y∗

k, z∗k)} be the
sequence of vectors generated by Algorithm 2 with tolerances ω∗ = 0 and η∗ = 0. Let
x∗ be any limit point of the sequence {x∗

k} and let K be the infinite set of indices asso-
ciated with the corresponding convergent subsequence. Then, under the assumptions
of Lemma 4.2, all parts of that lemma hold. In other words, (x∗, y∗, z∗) as defined in
Lemma 4.2 is a first-order KKT point.

Proof. Algorithm 2 generates positive scalars ρk and, by Step 1, generates positive
scalars ωk → 0. Step 2 of the algorithm generates a sequence {(x∗

k,∆y∗
k, z∗k)} that

satisfies (3.3) for each k. Therefore, the hypotheses of Lemma 4.2 hold, and Part 1 of
the lemma follows immediately.

Note that each x∗
k satisfies (3.3a), and so all x∗

k ≥ 0. Thus, x∗ ≥ 0. Moreover,
because τσ > 1 and σ is finite, Steps 7 and 11 of Algorithm 2 ensure that σk is
uniformly bounded. For all k ∈ K, we then need to consider the four possible cases:

1. ρk is uniformly bounded, and σk → 0;
2. ρk is uniformly bounded, and σk 9 0;
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3. ρk →∞ and σk → 0;
4. ρk →∞ and σk 9 0.

For the remainder of this proof, we consider only k ∈ K.
We dismiss Cases 1 and 4 because they cannot be generated by the algorithm. (As

k gets large, σk → 0 only if Step 11 is executed infinitely many times, contradicting
the finiteness of ρk. Conversely, if ρk →∞, then Steps 7 and 11 ensure that σk → 0.)

Case 2 implies that Step 7 of Algorithm 2 is executed for all k large enough.
Thus, xk+1 = x∗

k for all large k, and hence x∗
k → x∗ implies xk → x∗. Therefore,

‖x∗
k−xk‖ → 0. Because each ∆y∗

k satisfies (3.4) and σk and ωk are uniformly bounded,
Part 2 of Lemma 4.2 holds. In addition, ηk → 0 because ρk > 1 and Step 9 is executed
for all k large enough. Therefore, the condition ‖c(x∗

k)‖ ≤ ηk for all k large enough
implies that c(x∗

k)→ 0. By continuity of c, c∗ = 0. Thus, Part 3 of Lemma 4.2 holds.
Now consider Case 3. Because σk → 0 and ωk → 0, (3.4) implies that ‖∆y∗

k‖ → 0
as k increases. Then Part 2 of the lemma holds. To show that c(x∗

k)→ 0, divide both
sides of (4.3) by ρk to obtain

‖c(x∗
k)‖ ≤ α1ωk

ρk︸ ︷︷ ︸
(a)

+
1

ρk
‖∆y∗

k‖
(
M‖x∗

k − xk‖+ 1
)

︸ ︷︷ ︸
(b)

+
α2

ρk
‖x∗

k − x∗‖
︸ ︷︷ ︸

(c)

+
1

ρk
‖yk − y∗‖

︸ ︷︷ ︸
(d)

.

Term (a) clearly goes to zero as ρk increases. Because ∆y∗
k satisfies (3.4), and because

x∗
k and xk belong to the compact set B, (b) and (c) go to zero as ρk increases. By

Lemma 4.3, ‖yk‖/ρk → 0, and so (d) goes to 0. We conclude that ‖c(x∗
k)‖ → 0 as k

increases, as required.

4.1.4. Finite termination. Note that the convergence test takes place only if
Step 3 of Algorithm 2 tests true; i.e., if ‖c(x∗

k)‖ ≤ ηk (because η∗ = 0). To guarantee
that the algorithm will eventually terminate as the iterates xk, yk, and zk converge,
we need to guarantee that Steps 4 and 8 execute infinitely often. The forcing sequence
ηk is intimately tied to this occurrence. For example, if ηk ≡ 0, then we would not
normally expect Step 3 to evaluate true (except in rare occasions when c(x∗

k) = 0).
The forcing sequence defined by Steps 9 and 12 of Algorithm 2 is suggested by Conn
et al. [9, 10]. The following corollaries show that this forcing sequence has the desired
property and summarize the global convergence properties of Algorithm 2. Unlike for
the previous results in this section, we now need to strengthen our assumptions and
require that only a single limit point exists.

Corollary 4.5 (Global convergence with a single limit point). Let {(xk, yk, zk)}
be the sequence of vectors generated by Algorithm 2. Let x∗ be the single limit point
of the sequence {x∗

k}. Suppose that Assumptions 1.2, 1.3, and 1.4 hold. Then

lim
k→∞

(xk, yk, zk) = (x∗, y∗, z∗),

and (x∗, y∗, z∗) is a first-order KKT point for (GNP).
Proof. Let {(x∗

k,∆y∗
k, z∗k)} be the sequence of vectors generated by Step 2 of

Algorithm 2 and set ŷk = ŷ(x∗
k, yk + ∆y∗

k, ρk). By Lemma 4.2 and Theorem 4.4,

lim
k→∞

ŷk = y∗ and lim
k→∞

z∗k = z∗.

Moreover, (x∗, y∗, z∗) is a first-order KKT point for (GNP). Suppose that Step 4 is
executed infinitely often. The result then follows immediately because xk, yk, and zk

are updated infinitely often and form a convergent sequence from x∗
k, ŷk, and z∗k.
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We now show by contradiction that Step 4 does occur infinitely often. Suppose
instead that it does not. Then there exists a k1 large enough so that Steps 10 and 11
are executed for all k > k1. Consider only iterations k > k1. Then yk ≡ ȳ and
ρk →∞. As in (4.12), the definition of ŷk gives

ρk‖c(x∗
k)‖ = ‖ȳ + ∆y∗

k − ŷk‖
≤ ‖∆y∗

k‖+ ‖ȳ‖+ ‖ŷk‖.
(4.18)

Each ∆y∗
k satisfies ‖∆y∗

k‖∞ ≤ σk+ωk (3.4) with σk+ωk uniformly bounded. Moreover,
limk→∞ ŷk = y∗ and y∗ is bounded. (Assumption 1.4 ensures that the least-squares
solution of (4.1) exists and is unique.) Then from (4.18) there exists some constant
L > 0, independent of k, such that

ρk‖c(x∗
k)‖ ≤ L (4.19)

for all k. But the test at Step 3 fails at every iteration, so that

ηk < ‖c(x∗
k)‖. (4.20)

Combining (4.19) and (4.20), we find that

ρkηk < ρk‖c(x∗
k)‖ ≤ L. (4.21)

From Step 12, ηk+1 = η0/ρ
α
k+1, so

ρkηk = ρk
η0

ρα
k

= η0ρ
1−α
k . (4.22)

Substituting (4.22) into (4.21), we find that η0ρ
1−α
k < L for all k. This is a contra-

diction under the hypothesis that α < 1 and ρk →∞. Therefore, Step 4 must occur
infinitely often.

The following result simply asserts that Algorithm 2 will eventually exit when ω∗
and η∗ are positive, as they are in practice.

Corollary 4.6 (Finite Termination). Suppose that the convergence tolerances
ω∗ and η∗ are strictly positive. Then, under the assumptions of Corollary 4.5, Algo-
rithm 2 terminates after a finite number of iterations.

Proof. Let {(x∗
k,∆y∗

k, z∗k)} and x∗ be as in Theorem 4.4. Set ŷk = ŷ(x∗
k, yk +

∆y∗
k, ρk). By that theorem,

lim
k→∞

ŷk = y∗

lim
k→∞

z∗k = z∗
def
=∇xL(x∗, y∗, 0),

and (x∗, y∗, z∗) is a first-order KKT point for (GNP). Then, (x∗, y∗, z∗) must sat-
isfy (1.5). By the continuity of c, limk→∞ ‖c(x∗

k)‖ → c∗ = 0, and because η∗ > 0,

‖c(x∗
k)‖ < η∗ ≤ max(ηk, η∗)

for all k ∈ K large enough. Consequently, Step 8 is executed infinitely often and

lim
k→∞

(xk, yk, zk)→ (x∗, y∗, z∗).

Because ω∗ > 0 and η∗ > 0, (xk, yk, zk) satisfies conditions (1.7) for some k large
enough.
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4.2. Local convergence properties. In this section we show that the sLCL
algorithm preserves the local convergence characteristics of Robinson’s original LCL
algorithm. Moreover, it can retain fast local convergence under inexact solutions to
the subproblems.

Bertsekas [1] and Conn et al. [9, 10] show how to construct a forcing sequence {ηk}
to guarantee that ‖c(x∗

k)‖ ≤ ηk will eventually always be true so that the iterates xk,
yk, and zk are updated (see Step 4 of Algorithm 2) for all iterations after some k large
enough. The penalty parameter ρk then remains uniformly bounded—an important
property. These results rely on a relationship between ‖c(x∗

k)‖ and ρk, namely (4.3).
We know from BCL convergence theory that the convergence rate is superlinear if
ρk →∞ and linear otherwise (cf. [1] and [9, 10]). Because ηk is reduced at a sublinear
rate, ‖c(x∗

k)‖ will eventually go to zero faster than ηk, at which point it is no longer
necessary to increase ρk. Thus, we can be assured that Algorithm 2 does not increase
ρk without bound.

Bertsekas [1] and Powell [37] suggest constructing the sequence ηk as

ηk+1 = γ‖c(x∗
k)‖, (4.23)

for some γ < 1. Within Algorithm 2, this would lead to the following update rule:

ρk+1 =

{
ρk if ‖c(x∗

k)‖ ≤ γ‖c(xk)‖
τρρk if ‖c(x∗

k)‖ > γ‖c(xk)‖.
(4.24)

As ρk gets larger, the convergence rate becomes arbitrarily close to superlinear, so
that the first case of (4.24) is always satisfied, and ρk becomes constant for all k large
enough. We prefer not to use rule (4.23) because it may be too strict. Any interme-
diate (and nonoptimal) iterate x∗

k could be feasible or nearly feasible for (GNP), so
that ‖c(x∗

k)‖ could be very small. Then ηk+1 would be smaller than warranted on the
following iteration. The forcing sequence suggested by Conn et al. [9, 10] does not
suffer from this defect and has been proven by them to keep ρk bounded. We have
used this update in Algorithm 2 (see Steps 9 and 12).

For this analysis and the remainder of this section, we assume that ρk is uniformly
bounded, so that ρk = ρ̄ for all k greater than some k̄. Hence, we drop the subscript
on ρk and simply write ρ̄. We consider only iterations k > k̄.

The local convergence analysis will require the following second-order sufficiency
condition.

Definition 4.7 (Strict Complementarity). The point (x∗, y∗, z∗) satisfies strict
complementarity if it satisfies (1.5) and max(x∗, z∗) > 0.

Definition 4.8 (Second-Order Sufficiency). The point (x∗, y∗, z∗) satisfies the
second-order sufficiency conditions for (GNP) if it satisfies (1.5) and strict comple-
mentarity and if for every ρ ≥ 0,

pT∇2
xxL(x∗, y∗, ρ)p > 0 (4.25)

for all p 6= 0 satisfying

J(x∗)p = 0 and [p]j = 0 for all j such that [x∗]j = 0 (4.26)

(and [z∗]j > 0).
Assumption 4.9. The point (x∗, y∗, z∗) satisfies the second-order sufficiency

conditions for (GNP).
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Again, second-order sufficiency is normally defined in terms of the Lagrangian
function, not the augmented Lagrangian function used in Definition 4.8, but our
definition is not more restrictive: if (4.25) holds for ρ = 0 (the usual case) then it
certainly holds for all ρ ≥ 0.

We begin by discussing the local convergence rates of the Algorithm 2 under the
assumption that the elastic variables are always zero—that is, the linearized con-
straints are always satisfied. Next, we show that after finitely many iterations the
elastic penalty parameter σk will always be large enough to guarantee that this as-
sumption holds. In this way, we demonstrate that sLCL becomes equivalent to MINOS
(and to canonical LCL) as it approaches the solution.

4.2.1. Convergence rates. Robinson’s [38] local convergence analysis applies
to the canonical LCL algorithm under the special case in which ρk ≡ 0 and each
subproblem is solved to full accuracy (i.e., ωk ≡ 0). He proved that one can expect fast
convergence from a good enough starting point. In particular, under Assumptions 1.2,
4.9, and 1.4, we can expect an R-quadratic rate of convergence. (See Ortega and
Rheinboldt [36] for an in-depth discussion of root-convergence rates.) For a sufficiently
good starting point, Robinson [39] proves that the subproblems (LCk) are always
feasible. He also shows that near a solution, the solutions to the linearly constrained
subproblems, if parameterized appropriately, form a continuous path converging to
(x∗, y∗, z∗).

In a later paper, Bräuninger [6] shows how the fast local convergence rate can be
preserved with only approximate solutions of the subproblems (again, with ρk ≡ 0).
The subproblems are solved to a tolerance that is tightened at a rate that matches
the decrease in the square of the primal and dual infeasibilities. Our proposed LCL
algorithm uses a similar strategy.

Robinson’s local convergence analysis also applies to the canonical LCL algorithm
when ρk ≡ ρ̄ > 0. One can see this by considering the optimization problem

minimize
x

f(x) + 1
2 ρ̄‖c(x)‖2

subject to c(x) = 0, x ≥ 0
(4.27)

and applying Robinson’s method. The solutions of (4.27) are identical to the solutions
of (GNP). The Robinson LCL subproblem objective for problem (4.27) is

Rk(x) ≡ f(x) + 1
2 ρ̄‖c(x)‖2 − yT

kc(x).

The canonical LCL subproblem objective is Lk(x) ≡ L(x, yk, ρk), and so Lk(x) ≡
Rk(x) for all k because ρk ≡ ρ̄. We then observe that the canonical LCL subproblem
corresponding to (GNP), with a penalty parameter ρk ≡ ρ̄, is equivalent to the Robin-
son LCL subproblem corresponding to problem (4.27), with ρk ≡ 0. The convergence
characteristics of the canonical LCL algorithm are therefore the same as those demon-
strated by Robinson [38]. (However, while the asymptotic convergence rate remains
R-quadratic, we expect a different asymptotic error constant.)

Under the assumption that the elastic variables are always equal to 0 and that ρ̄
is finite, the steps executed by Algorithms 1 and 2 are identical, and the subproblems
(ELCk) and (LCk) are also identical. The only difference is the multiplier update
formulas:

Canonical LCL update yk+1 = yk + ∆y∗
k (4.28a)

Stabilized LCL update yk+1 = yk + ∆y∗
k − ρ̄c(x∗

k), (4.28b)



18 MICHAEL P. FRIEDLANDER AND MICHAEL A. SAUNDERS

which differ by the vector ρ̄c(x∗
k). We may think of this vector as a perturbation of the

LCL multiplier update (4.28a). Moreover, Robinson [38] shows that this perturbation
converges to 0 at the same rate as {x∗

k} converges to x∗. Therefore, it does not interfere
with the convergence rate of the sLCL iterates. Robinson’s local convergence analysis
then applies to the sLCL method.

We summarize the convergence results in Theorem 4.10. Note that the function

F (x, y, z) =




c(x)
∇xL(x, y, ρ)− z

min(x, z)




captures the first-order optimality conditions of (GNP), in the sense that the vector
F (x∗, y∗, z∗) = 0 if and only if (x∗, y∗, z∗) is a first-order KKT point for (GNP). Thus,
‖F (x, y, z)‖ is a measure of the deviation from optimality. For the next theorem only,
define

r =




x
y
z


 and F (r) = F (x, y, z).

Theorem 4.10 (Robinson [38]; Bräuninger [6]). Suppose Assumptions 1.2, 1.4,
and 4.9 hold at r∗. Moreover, suppose ωk = O(‖F (rk)‖2) for all k ≥ 0. Then there
is a positive constant δ such that if ‖r0 − r∗‖ < δ, the sequence {rk} generated by
Algorithm 2 converges to r∗. Moreover, the sequence converges R-quadratically, so
that for all k ≥ 0,

‖rk − r∗‖ ≤ Q( 1
2 )2

k

(4.29)

for some positive constant Q. Also,

‖rk+1 − rk‖ ≤M‖F (rk)‖ (4.30)

for some positive constant M .
Robinson does not state (4.30) as part of a theorem, but it is found in the proof

of (4.29).

4.2.2. Asymptotic equivalence to MINOS. Much of the efficiency of LCL
methods, including MINOS, derives from the fact that they eventually identify the
correct active set, and each subproblem restricts its search to the subspace defined by
a linear approximation of the constraints. This approximation can be very accurate
near the solution. The sLCL subproblems do not restrict themselves to this subspace.
In early iterations we do not expect, nor do we wish, the method to honor these
linearizations. The elastic variables give the subproblems an opportunity to deviate
from this subspace. In order to recover LCL’s fast convergence rate, however, it is
not desirable to allow deviation near the solution.

As we show in the next theorem, the elastic variables v∗
k and w∗

k will be bounded
by the parameter ωk that controls the termination of the subproblems. In practice,
we might choose to set ωk ≡ ω∗ after some number of iterations, in effect asking for
accurate subproblem solutions for all remaining iterates. Hence, x∗

k will eventually
always satisfy the linearized constraints to within the specified tolerance ω∗.

Theorem 4.11. Let {(xk, yk, zk)} and {(v∗
k, w∗

k)} be the sequence of vectors gen-
erated by Algorithm 2. Let x∗ be the single limit point of the sequence {x∗

k}. Suppose
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that Assumptions 1.2–1.4 hold, and that the sequence {ρk} remains bounded. Then
for all k large enough, ‖v∗

k‖∞ ≤ ωk and ‖w∗
k‖∞ ≤ ωk.

Proof. By assumption, ρk is uniformly bounded, so that ρk ≡ ρ̄ for all k large
enough. Consider only such k for the remainder of the proof. Set σ = 1/ρ̄.

The hypotheses of the theorem are the same as those for Corollary 4.5. Therefore,
Corollary 4.5 applies and x∗

k → x∗ with c(x∗) = 0 and yk → y∗. Because c is
continuous, the sequence {yk} is Cauchy, and ωk → 0, there exists some k̄ large
enough so that

ρ̄‖c(x∗
k)‖∞ < 1

2σ (4.31a)

‖yk+1 − yk‖∞ < 1
2σ − ωk (4.31b)

for all k > k̄. Step 5 is executed for all k large enough, so that yk+1 = yk+∆y∗
k−ρ̄c(x∗

k).
From the triangle inequality and (4.31), we see that

‖∆y∗
k‖∞ ≤ ‖∆y∗

k − ρ̄c(x∗
k)‖∞ + ρ̄‖c(x∗

k)‖∞
= ‖yk + ∆y∗

k − ρ̄c(x∗
k)− yk‖∞ + ρ̄‖c(x∗

k)‖∞
= ‖yk+1 − yk‖∞ + ρ̄‖c(x∗

k)‖∞
< σ − ωk

(4.32)

for all k > k̄. However, Step 7 of Algorithm 2 guarantees that σ ≤ σk for all k, and
so from (4.32),

σke−∆y∗
k > σke− (σ − ωk)e ≥ ωke, (4.33)

for all k > k̄. Because v∗
k and ∆y∗

k both satisfy (3.3e), (4.33) implies that ‖v∗
k‖∞ ≤ ωk

for all k large enough. By a similar argument, σke + ∆y∗
k > ωke, implying that

‖w∗
k‖∞ ≤ ωk for all k large enough.

4.3. Infeasible problems. Not all optimization problems are well defined. The
user of an optimization algorithm may formulate a set of nonlinear constraints c(x) = 0
for which no nonnegative solution exists. Detecting infeasibility of a system c(x) = 0,
x ≥ 0, is equivalent to verifying that the global minimizer of

minimize
x

1
2‖c(x)‖2

subject to x ≥ 0
(4.34)

yields a positive objective value. Detecting such infeasibility is a useful feature, but
it is a very difficult problem and is beyond the purview of this paper.

We analyze the properties of the sLCL algorithm when it is applied to an in-
feasible problem with convergence tolerances ω∗ = η∗ = 0. We show that Algo-
rithm 2 converges to a point that satisfies the first-order optimality conditions of the
minimum-norm problem (4.34).

Theorem 4.12. Let x∗ be any limit point of the sequence of vectors {x∗
k} gen-

erated by Algorithm 2, and let K be the infinite set of indices associated with that
subsequence. Suppose that (GNP) is infeasible. Then, under the assumptions of
Lemma 4.2,

lim
k∈K

J(x∗
k)Tc(x∗

k) = z∗
def
=JT

∗ c∗,

and (x∗, z∗) is a first-order KKT point for (4.34).
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Proof. The pair (x∗, z∗) satisfies the first-order KKT conditions of (4.34) if

JT
∗ c∗ = z∗ and min(x∗, z∗) = 0. (4.35)

Because (GNP) is infeasible, there exists a constant δ > 0 such that δ < ‖c(x)‖
for all x ≥ 0. Moreover, Steps 9 and 12 of Algorithm 2 generate a sequence {ηk}
converging to 0, and so ηk < δ for all k large enough. Consider only such k. Then,
ηk < δ < ‖c(x∗

k)‖, and Step 11 is executed at every k, so that ρk → ∞ and σk → 0.
Moreover, xk and yk are not updated, so that for some n-vector x̄ and m-vector ȳ,

xk ≡ x̄ and yk ≡ ȳ. (4.36)

Note that Algorithm 2 generates x∗
k satisfying (3.3). Therefore, x∗

k ≥ 0 for all k,
and so limk∈K x∗

k = x∗ implies

x∗ ≥ 0. (4.37)

As in (4.5), and using (3.3d) and (4.36), we have

g(x∗
k)− J(x∗

k)T(ȳ − ρkc(x∗
k))− J(x̄)T∆y∗

k ≥ −ωke, (4.38)

or, after rearranging terms,

g(x∗
k)− J(x∗

k)Tȳ︸ ︷︷ ︸
(a)

− J(x̄)T∆y∗
k︸ ︷︷ ︸

(b)

+ρkJ(x∗
k)Tc(x∗

k) ≥ −ωke. (4.39)

By hypothesis, all iterates x∗
k lie in a compact set, and so (a) is bounded because g

and J are continuous and ȳ is constant. Also, (b) is bounded because x̄ is constant,
and from (3.4) we have ‖∆y∗

k‖∞ ≤ σk + ωk. Then, because ωk → 0 and ρk → ∞,
(4.39) implies that J(x∗

k)Tc(x∗
k) ≥ 0 for all k large enough. Otherwise, (4.39) would

eventually be violated as ρk grew large. Then,

z∗
def
= lim

k∈K
J(x∗

k)Tc(x∗
k) = JT

∗ c∗ ≥ 0. (4.40)

Because all x∗
k lie in a compact set, there exists some constant L > 0 such that

‖x∗
k − x̄‖ ≤ Lα1√

nM
, (4.41)

where M and α1 are as defined in Lemma 4.2. Expression (4.8) can be derived again
under the assumptions of this theorem. Substituting (4.41) into (4.8) and using (3.4)
and ŷk ≡ yk + ∆y∗

k − ρkc(x∗
k), we have

‖ĝ(x∗
k)− Ĵ(x∗

k)T(ȳ + ∆y∗
k) + ρkĴ(x∗

k)Tc(x∗
k)‖ ≤

√
n{ωk + L̂(σk + ωk)}, (4.42)

where L̂ > 0 accounts for the ∞-norm in (3.4). Dividing (4.42) through by ρk, we
obtain
∥∥∥∥

1

ρk

(
ĝ(x∗

k)− Ĵ(x∗
k)T(ȳ + ∆y∗

k)
)

+ Ĵ(x∗
k)Tc(x∗

k)

∥∥∥∥ ≤
√

n{ωk + L̂(σk + ωk)}
ρk

. (4.43)

The quantity ĝ(x∗
k)− Ĵ(x∗

k)T(yk + ∆y∗
k) is bounded for the same reasons that (a) and

(b) above are bounded. Taking limits on both sides of (4.43), we see that ρk →∞ and
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ωk, σk → 0 imply Ĵ(x∗
k)Tc(x∗

k)→ 0. By continuity of J and c, Ĵ T
∗ c∗ = 0. Equivalently,

we may write

[JT
∗ c∗]j = 0 if [x∗]j > 0, j = 1, . . . , n. (4.44)

Together, (4.37), (4.40) and (4.44) imply that (x∗, z∗) satisfies conditions (4.35), as
required.

Theorem 4.12 describes a useful feature of Algorithm 2. When applied to an
infeasible problem, the algorithm converges to a solution of (4.34)—or at least to a
first-order point. One important caveat deserves mention: if the convergence tolerance
η∗ is small (it usually will be), Algorithm 2 may never terminate. We need to insert
an additional test to provide for the possibility that (GNP) is infeasible. For example,
the test could force the algorithm to exit if ρk is above a certain threshold value and
‖c(x∗

k)‖ is no longer decreasing. Any test we devise is necessarily heuristic, however;
it is impossible to know for certain whether a larger value of ρk would force ‖c(x∗

k)‖
to be less than η∗. We discuss this point further in section 5.6.

4.4. Second-order optimality. The sLCL method imposes few requirements
on the manner in which the LC subproblems are solved. Our implementation (see
section 5) uses MINOS or SNOPT to solve the LC subproblems. These are active-set
solvers suitable for optimization problems with few expected degrees of freedom at the
solution and in which only first derivatives are available. However, second derivatives
might be readily available for some problems. Also, some problems are expected
to have many degrees of freedom at the solution. In either case, an interior-point
solver (requiring second derivatives) may be more appropriate for the solution of the
subproblems.

Lemma 4.2 and Theorem 4.4 assert that the sLCL iterates converge to first-
order KKT points. A subproblem solver that uses second-derivatives may be able to
guarantee convergence to second-order points. If we augment the convergence criteria
for the solution of each subproblem to include second-order conditions, we can show
that Algorithm 2 generates iterates converging to points satisfying the second-order
sufficiency conditions for (GNP). The following assumption strengthens the first-order
conditions (3.1).

Assumption 4.13. Let x∗ be any limit point of the sequence {x∗
k}, and let K be

the infinite set of indices associated with the corresponding convergent subsequence.
For all k ∈ K large enough, the following conditions hold at each (x∗

k,∆y∗
k, z∗k): For

some δ > 0, independent of k,
1. (Strict Complementarity)

max(x∗
k, z∗k) > δe; (4.45)

2. (Second-Order Condition) For any ρ ≥ 0,

pT∇2
xxL(x∗

k, yk + ∆y∗
k, ρ)p > δ‖p‖2 (4.46)

for all p 6= 0 satisfying

J(x∗
k)p = 0 and [p]j = 0 for all j such that [x∗

k]j = 0. (4.47)

Condition (4.46) implies that the reduced Hessian of L is uniformly positive def-
inite at all x∗

k. Note that if (4.46) holds for ρ = 0, then it holds for all ρ ≥ 0.
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The following result extends Theorem 4.4 to consider the case in which iterates
generated by Algorithm 2 satisfy Assumption 4.13. Conn et al. [10] show a similar
result for their BCL method.

Theorem 4.14. Suppose that Assumptions 1.2, 1.3, 1.4, and 4.13 hold. Let
{(x∗

k, y∗
k, z∗k)} be the sequences of vectors generated by Algorithm 2. Let x∗ be any

limit point of the sequence {x∗
k}, and let K be the infinite set of indices associated

with the corresponding convergent subsequence. Set ŷk = ŷ(x∗
k, yk + ∆y∗

k, ρk). Then

lim
k∈K

(x∗
k, ŷk, z∗k) = (x∗, y∗, z∗) (4.48)

and (x∗, y∗, z∗) is an isolated local minimizer of (GNP).
Proof. It follows immediately from Theorem 4.4 that (4.48) holds and that

(x∗, y∗, z∗) is a first-order KKT point for (GNP). It only remains to show that
(x∗, y∗, z∗) satisfies the second-order sufficiency conditions (see Definition 4.8).

By hypothesis, x∗
k and z∗k satisfy Part 1 of Assumption 4.13 for all k ∈ K. There-

fore, their limit points satisfy

max(x∗, z∗) ≥ δe > 0,

and so x∗ and z∗ satisfy strict complementarity (Definition 4.7). Now let p be any
nonzero vector satisfying (4.47) for all k ∈ K large enough. Then

pT∇2
xxL(x∗

k, yk + ∆y∗
k, ρk)p = pT

(
H(x∗

k)−
m∑

i=1

[ŷk]iHi(x
∗
k)
)
p (4.49)

for all k ∈ K large enough. Part 2 of Assumption 4.13 and (4.49) imply that

pT
(
H(x∗

k)−
m∑

i=1

[ŷk]iHi(x
∗
k)
)
p > δ‖p‖2, (4.50)

where δ is some positive constant. If we take the limit of (4.50), the continuity of H
and Hi (see Assumption 1.2) and (4.48) imply that

pT∇2
xxL(x∗, y∗, ρ)p = pT

(
H(x∗)−

m∑

i=1

[y∗]iHi(x∗)
)
p ≥ δ‖p‖2 > 0 (4.51)

for all ρ ≥ 0 and for all p 6= 0 satisfying (4.26). Therefore, (x∗, y∗, z∗) satisfies the
second-order sufficiency conditions for (GNP), as required.

5. Implementation. The practical implementation of an algorithm invariably
requires many features that are not made explicit by its theory. In this section we
discuss some important details of our sLCL implementation. The algorithm has been
implemented in Matlab, version 6 [31] and is called LCLOPT. It uses the Fortran
codes MINOS [33, 34] or SNOPT [23] to solve the linearly constrained subproblems.
We now turn our attention to an optimization problem with more general constraints
and leave (GNP) behind.

5.1. Problem formulation. LCLOPT solves problems of the form

(NPi) minimize
x,s

f(x)

subject to

(
c(x)
Ax

)
− s = 0, l ≤

(
x
s

)
≤ u.
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This matches the problem formulation used by SNOPT and is closely related to that
used by MINOS. As in those methods, our implementation distinguishes between
variables in the vector x that appear and do not appear nonlinearly in the objective
or the constraints; variables that appear only linearly are treated specially. The
following discussion ignores this detail in order to keep the notation concise.

The linearly constrained subproblems corresponding to (NPi) take the form

(ELCik) minimize
x,s,v,w

Lk(x) + σkeT(v + w)

subject to

(
ck + Jk(x− xk) + v − w

Ax

)
− s = 0, l ≤

(
x
s

)
≤ u,

0 ≤ v, w.

5.2. The main algorithm. The computational kernel of LCLOPT resides in
the solution of each LC subproblem, and the efficiency of the implementation ulti-
mately relies on the efficiency of the subproblem solver. The main tasks of the outer
level are to form the subproblems, update solution estimates, update parameters, and
test for convergence or errors.

5.3. Solving the LC subproblems. For the linearly constrained subproblems,
MINOS uses a reduced-gradient method, coupled with a quasi-Newton approxima-
tion of the reduced Hessian of the problem objective. SNOPT implements a sparse
SQP method and maintains a limited-memory, quasi-Newton approximation of the
Hessian of the problem objective. (In both cases, the problem objective is the objec-
tive of (ELCik).) For linearly constrained problems, SNOPT avoids performing an
expensive Cholesky factorization of the reduced Hessian for the quadratic program-
ming subproblem in each of its own major iterations, and thus realizes considerable
computational savings over problems with nonlinear constraints [24].

Both MINOS and SNOPT are available as libraries of Fortran 77 routines. We
implemented MEX interfaces [32] written in C to make each of the routines from
the MINOS and SNOPT libraries accessible from within Matlab. The subproblem
solvers evaluate the nonlinear objective function (there are no nonlinear constraints
in (ELCik)) through a generic MEX interface, funObj.c. This routine makes calls to
a Matlab routine to evaluate the nonlinear objective Lk. In turn, the routine for
Lk makes calls to routines (available as Matlab or MEX routines) to evaluate the
original nonlinear functions f and c.

5.4. Computing an initial point. MINOS and SNOPT both ensure that all
iterates remain feasible (to within a small tolerance) with respect to the bounds and
linear constraints in (ELCik), which includes the bounds and linear constraints in
(NPi). LCLOPT is therefore able to restrict the evaluation of the nonlinear functions
f and c to points in the latter region. A user of LCLOPT may thus introduce bounds
and linear constraints into (NPi) to help guard against evaluation of the nonlinear
functions at points where they are not defined.

Before entering the first sLCL iteration, LCLOPT uses SNOPT to solve one of
the following proximal-point (PP) problems:

(PP1) minimize
x

‖x− x̃‖1

subject to l ≤
(

x
Ax

)
≤ u
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or

(PP2) minimize
x

1
2‖x− x̃‖22

subject to l ≤
(

x
Ax

)
≤ u,

where x̃ is a vector provided by the LCLOPT user. The solution is used as initial point
x0 for the sLCL algorithm. The PP objective functions help find an x0 reasonably
close to x̃, while the constraints ensure that x0 is feasible with respect to the bounds
and linear constraints of (NPi). If the PP problem proves infeasible, (NPi) is declared
infeasible and LCLOPT exits immediately with an error message.

The computational results presented in section 6 were derived by using (PP2) to
compute x0. As suggested by Gill et al. [24], a loose optimality tolerance on (PP2)
is used to limit the computational expense of its solution: reducing the number of
iterations and (typically) the number of superbasic variables.

5.5. Early termination of the LC subproblems. The global convergence
results for the sLCL algorithm (cf. Lemma 4.2 and Theorem 4.4) assume that the
optimality tolerances ωk for the subproblems converge to 0. This loose requirement
allows much flexibility in constructing the sequence {ωk}.

The solution estimates may be quite poor during early iterations. We expect slow
progress during those iterations, even if they are solved to tight optimality tolerances.
A loose tolerance may help limit the computational work performed by the subproblem
solver during these early iterations. Near a solution, however, we wish to reduce the
optimality tolerance quickly in order to take advantage of the fast local convergence
rate predicted by Theorem 4.10.

To construct the sequence {ωk}, we replace Step 1 of Algorithm 2 by

ω ← min(ωk, ‖F (xk, yk, zk)‖2∞)

ωk+1 ← max(0.5ω, ω∗),
(5.1)

where ω0 can be set by a user to any value between 0.5 and ω∗. The update (5.1)
guarantees that ωk → ω∗, as required. A gentler reduction is discussed in section 6.5.

Following the prescription outlined in section 3.2, we fix at a small value the feasi-
bility tolerance for satisfying the linearized constraints. The feasibility and optimality
tolerances for each major iteration are passed to the subproblem solver as run-time
parameters.

5.6. Detecting infeasibility and unboundedness. As discussed in section
4.3, Algorithm 2 will not exit if the optimization problem is infeasible and the infea-
sibility tolerance η∗ is small. We declare (NPi) infeasible if at any given iteration k,
xk is infeasible with respect to the nonlinear constraints and the penalty parameter
is greater than some threshold value ρ̄. In particular, at Step 11, Algorithm 2 exits
and (NPi) is declared infeasible if

max(‖[lc − ck]+‖∞, ‖[ck − uc]
+‖∞) > η∗ and ρk > ρ̄,

where lc and uc are the lower and upper bounds for the nonlinear constraints and
[ · ]+ is the positive part of a vector. For the computational results in section 6 the
threshold value was set at ρ̄ = 108.
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We also need to consider the possibility that (NPi) is unbounded—i.e., that the
objective function f is unbounded below in the feasible region, or that ‖x‖ → ∞.
As with tests for infeasibility, any test for unboundedness must be ad hoc. We rely
on the LC solver to help detect infeasibility. Problem (NPi) is declared unbounded
and LCLOPT exits if the point xk is feasible and the LC solver reports (ELCik) as
unbounded.

5.7. Summary of the stabilized LCL method. The following is a summary
of the sLCL algorithm implemented in LCLOPT. We assume that x̃ is given and the
starting tolerances ω0, η0 and the parameters ρ0, σ0 are set.

1. Apply the LC solver to (PP1) or (PP2) to obtain a starting point x0 that
is feasible with respect to the bounds and linear constraints and reasonably
close to x̃. If the PP problem is infeasible, declare (NPi) infeasible and exit.
Otherwise, set k = 0.

2. Evaluate the functions and gradients at xk. Linearize the constraints and
form (ELCik).

3. Apply the LC solver to (ELCik) with optimality tolerance ωk to obtain
(x∗

k,∆y∗
k, z∗k). Set y∗

k = yk + ∆y∗
k.

4. If (ELCik) is unbounded and x∗
k is feasible, declare (NPi) unbounded and

exit. If (ELCik) is unbounded and x∗
k is infeasible, go to Step 8. Otherwise,

continue.
5. If x∗

k meets the current nonlinear feasibility threshold ηk, continue. Otherwise,
go to Step 8.

6. Update the solution estimate: (xk+1, yk+1, zk+1) ← (x∗
k, y∗

k − ρkc(x∗
k), z∗k).

Keep the penalty parameter ρk fixed and reset the elastic weight σk.
7. Test convergence: If (xk+1, yk+1, zk+1) satisfies the optimality conditions for

(NPi), declare optimality, return (xk+1, yk+1, zk+1), and exit. Otherwise, go
to Step 9.

8. If ρk > ρ̄, declare (NPi) infeasible, return (x∗
k, y∗

k, z∗k), and exit. Otherwise,
discard the subproblem solution (i.e., (xk+1, yk+1, zk+1) ← (xk, yk, zk)), in-
crease the penalty parameter ρk, and reduce the elastic weight σk.

9. Set the next nonlinear feasibility threshold ηk+1 and LC subproblem optimal-
ity tolerance ωk+1, so that {(ωk, ηk)} → (ω∗, η∗).

10. Set k ← k + 1. Return to Step 2.

6. Numerical Results. This section summarizes the results of applying two
versions of LCLOPT to a subset of nonlinearly constrained test problems (specified in
the later subsections) from the COPS 2.0 [15], Hock-Schittkowski [28], and CUTE [5]
test suites. The first version uses AMPL/MINOS 5.5 [19], version 19981015, to solve
the sequence of linearly constrained subproblems; the second version uses SNOPT
version 6.1-1(5).

We used the AMPL versions of all problems, as formulated by Vanderbei [43].
A MEX interface to the AMPL libraries makes functions and gradients available in
Matlab (see Gay [22] for details on interfacing external routines to AMPL). All
runs were conducted on an AMD Athlon 1700XP using 384 MB of RAM, running
Linux 2.4.18. (The CUTE versions of the problems could also have been used from
Matlab.)

Figure 6 shows performance profiles, as described by Dolan and Moré [16], for
the two versions of LCLOPT (the dotted and dashed lines) and MINOS (the solid
line). The statistic profiled in the top chart is the total number of function and
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Fig. 6.1. Performance profiles for the number of function and gradient evaluations and the
total minor iterations. For each solver, the vertical axes represent the percentage of problems for
which the relevant statistic is within a factor τ of the best (among all three solvers). The horizontal
axes are based on a log scale. The profiles include results for all 135 test problems.

gradient evaluations. In the bottom chart it is the total minor iterations. (Because the
nonlinear objective, constraint, and gradient evaluations always occur together, each
evaluation of (f, c, g, J) is counted once.) All 135 problems selected from the COPS,
Hock-Schittkowski, and CUTE test suites are included in each profile. For each solver
and each τ on the horizontal axis, a profile shows the percentage of problems for which
the statistic in question (following a successful solve) is within a factor τ of the best.

We see that LCLOPT with MINOS as subproblem solver solved the largest pro-
portion of problems and may therefore be regarded as the most reliable method.
Compared with MINOS, LCLOPT tends to require more minor iterations (a measure
of total computational work). We comment further in section 6.5.
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BEGIN LCL SUBPROBLEM

Scale option 0

Superbasics limit 2000

Iterations 5000

Feasibility tol 1.0e-6

END LCL SUBPROBLEM

(a) The MINOS specs file

BEGIN LCL SUBPROBLEM

Scale option 0

Superbasics limit 2000

Iterations 5000

Major iterations 1000

Minor iterations 500

Minor feasibility tol 1.0e-6

Minor optimality tol 2.5e-7

END LCL SUBPROBLEM

(b) The SNOPT specs file

Fig. 6.2. The fixed optional parameters for every subproblem solve.

6.1. Default parameters. Figure 6.2 shows the options files that LCLOPT
uses for the LC solvers. These are fixed for all subproblems. Separately, at each
major iteration, LCLOPT sets the parameter Optimality Tolerance in MINOS and
the parameter Major Optimality Tolerance in SNOPT. These are the subproblem
optimality tolerances ωk (see section 5.5).

Each test problem supplies a default starting point. It is used as x̃ in the proximal-
point problem (see section 5.4). The initial multiplier vector y0 is set to zero.

Both MINOS and SNOPT provide the option to reuse a quasi-Newton approxima-
tion of a Hessian from a previous solve: MINOS approximates the reduced Hessian;
SNOPT approximates the full Hessian. We take advantage of this feature for all
iterations k = 2, 3, 4, . . . by setting the MINOS and SNOPT options Start = ‘Hot’.

The parameters used by Algorithm 2 are set as follows. The upper and lower
bounds of the elastic penalty parameters are σ = 1 and σ = 104. The initial elastic
weight is σ0 = 102. (Normally, LCLOPT scales this quantity by 1 + ‖y0‖∞, but the
scaling has no effect for these test runs because y0 ≡ 0.) The penalty scaling factors
are τρ = τσ = 10. As suggested in [10], we set α = 0.1 and β = 0.9. The initial penalty
parameter is ρ0 = 105/2/mc, where mc is the number of nonlinear constraints. The
final optimality and feasibility tolerances are ω∗ = η∗ = 10−6. The initial optimality
and feasibility tolerances are ω0 = 10−3 (=

√
ω∗) and η0 = 1.

In all cases, default options, with the exception of Major Iterations 500 and
Superbasics Limit 2000, are used for the MINOS benchmarks.

6.2. The COPS test problems. The COPS 2.0 collection [15] comprises 17
problems. Five problems are excluded for the following reasons:

• bearing, minsurf, and torsion are unconstrained or bound constrained.
• glider and marine cause system errors when called from the AMPL MEX

interface.
The dimensions of the COPS test problems can be adjusted. In all cases, the

solvers were applied to the largest version of the problem that would not cause the
system to page memory to disk. Tables 6.1 and 6.2 specify the chosen dimensions.

As shown in Table 6.3, the version of LCLOPT using MINOS for the subproblems
solved all 12 problems to first-order optimality. The version using SNOPT solved 11
problems to first-order optimality; the exception was robot, which it declared as having
infeasible nonlinear constraints. MINOS solved 10 of the 12 problems to optimality; it
declared steering an infeasible problem, and it terminated the solution of elec because
of excessive iterations. Feasible points exist for all of the test problems chosen, so we
consider all declarations of infeasibility to be errors.
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Table 6.1
The heads used in Tables 6.2 and 6.5

m Constraints (linear and nonlinear)
mc Nonlinear constraints
n Variables
nc Variables appearing nonlinearly in c
nf Variables appearing nonlinearly in f

Table 6.2
Dimensions of the 12 selected COPS test problems

Problem m mc n nc nf

camshape 1604 801 800 800 0
catmix 1603 1600 2403 2403 0
chain 204 1 402 201 402
channel 800 400 800 800 0
elec 201 200 600 600 600
gasoil400 4004 3200 4003 4003 202
marine 1208 800 1215 1215 344
methanol 2406 1800 2405 1605 1670
pinene 4006 3000 4005 2405 2469
polygon 1377 1225 100 100 100
robot 2414 2400 3611 3209 0
rocket 2409 1200 1605 1605 0
steering 2011 1600 2007 1204 0

We note that different local optima appear to have been found for problems
camshape, methanol, polygon, and rocket. Also, many minor iterations were required
on catmix, elec, and robot with SNOPT as its subproblem solver. Especially during
early major iterations, SNOPT was unable to solve the subproblems to the required
optimality tolerance within the 5000 iteration limit. Rather than terminate with an
error message, LCLOPT restarts SNOPT several times on the same subproblem. In
practice, a different strategy would be adopted, but our goal was to test the robustness
of the outer iterations (the sLCL method), not the robustness of the subproblem
solvers.

Table 6.3
Summary of results for the 12 selected COPS test problems

LCLOPT

(MINOS) (SNOPT) MINOS

Optimal 12 11 10
False Infeasibility 1 1
Terminated by iteration limit 1

Major iterations 118 179 380
Minor iterations 53950 147518 61388
Function evaluations 53081 11014 63701
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6.3. The Hock-Schittkowski test problems. The HS test suite contains 86
nonlinearly constrained problems [28]. These are generally small and dense problems.
We exclude five problems from this set for the following reasons:

• hs67, hs85, and hs87 are not smooth.
• hs68 and hs69 require external functions.

Both versions of LCLOPT solved the same 80 problems to first-order optimal-
ity, but both declared hs109 infeasible. MINOS solved 80 problems to first-order
optimality but declared hs93 infeasible.

On hs13, all the solvers reached different solutions. However, the linear inde-
pendence constraint qualification does not hold at the solution, and this violates the
assumptions made for both LCLOPT and MINOS.

Recall that LCLOPT and MINOS use only first derivatives and hence may not
converge to local minimizers of a problem. For example, LCLOPT (in both versions)
converged to a known local solution of hs16, but MINOS converged to some other
first-order point. In contrast, MINOS converged to the known local solutions of hs97
and hs98, while LCLOPT (in both versions) converged to other first-order points.
Similar differences exist for problems hs47 and hs77.

Table 6.4
Summary of results for the 81 selected Hock-Schittkowski test problems

LCLOPT

(MINOS) (SNOPT) MINOS

Optimal 80 80 80
False infeasibility 1 1 1

Major iterations 654 648 1160
Minor iterations 7415 25290 10111
Function evaluations 12269 14712 27127

6.4. A selection of CUTE test problems. With the select utility [5], we
extracted from the CUTE test suite dated September 7, 2000, problems with the
following characteristics (where * is a wild-card character):

Objective function type : *

Constraint type : Q O (quadratic, general nonlinear)

Regularity : R (smooth)

Degree of available derivatives : 1 (first derivatives, at least)

Problem interest : M R (modeling, real applications)

Explicit internal variables : *

Number of variables : *

Number of constraints : *

These criteria yield 108 problems, but we excluded 66 for the following reasons:

• 33 problems do not have AMPL versions: car2, c-reload, dembo7, drugdis, durgdise,

errinbar, junkturn, leaknet, lubrif, mribasis, nystrom5, orbit2, reading4, reading5,

reading6, reading7, reading8, reading9, rotodisc, saromm, saro, tenbars1, tenbars2,

tenbars3, tenbars4, trigger, truspyr1, truspyr2, zamb2, zamb2-8, zamb2-9, zamb2-

10, and zamb2-11;

• 21 problems cause system errors when evaluated either by the AMPL MEX interface
or by MINOS (when invoked from AMPL): brainpc2, brainpc3, brainpc4, brainpc5,
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brainpc6, brainpc7, brainpc8, brainpc9, bratu2dt, cresc132, csfi1, csfi2, drcav1lq,

drcav2lq, drcav3lq, kissing, lakes, porous1, porous2, trainf, and trainh;

• The AMPL versions of 12 problems are formulated with no nonlinear constraints:
drcavty1, drcavty2, drcavty3, flosp2hh, flosp2hl, flosp2hm, flosp2th, flosp2tl,

flosp2tm, methanb8, methanl8, and res.

Of the remaining 42 problems, 17 can be adjusted in size. The solvers were again
applied to the largest versions that would not cause memory paging. Table 6.5 gives
the dimensions.

Table 6.5
Dimensions of the variable-size CUTE test problems

Problem m mc n nc nf

bdvalue 1000 1000 1000 1000 0
bratu2d 4900 4900 4900 4900 0
bratu3d 512 512 512 512 0
cbratu2d 882 882 882 882 0
cbratu3d 1024 1024 1024 1024 0
chandheq 100 100 100 100 0
chemrcta 2000 1996 2000 1996 0
chemrctb 1000 998 1000 998 0
clnlbeam 1001 500 1499 499 1000
hadamard 257 128 65 64 65
manne 731 364 1094 364 729
reading1 5001 5000 10001 10000 10000
reading3 103 101 202 202 202
sreadin3 5001 5000 10000 9998 9998
ssnlbeam 21 10 31 11 22
svanberg 1001 1000 1000 1000 1000
ubh5 14001 2000 19997 6003 0

The version of LCLOPT using MINOS solved 36 of 42 problems to first-order
optimality, while the version using SNOPT solved 34 problems to first-order optimal-
ity. MINOS solved 34 problems to first-order optimality. Table 6.6 summarizes these
results. In terms of major iterations, the sLCL method was largely independent of
the subproblem solver if the latter did not fail. The high minor iterations count for
LCLOPT with SNOPT is due to an inordinate number of iterations (about 83,500) to
solve cresc50, svanberg, and ubh5, and to another 102,500 minor iterations for failed
subproblem solves terminated by the iteration limit.

6.5. Importance of early termination. Tables 6.3, 6.4 and 6.6 show that
MINOS solved many of the test problems using a reasonable number of minor itera-
tions but rather many major iterations (i.e., LC subproblem solves). This is because
MINOS terminates progress on each of its subproblems after only 40 minor iterations.
In contrast, LCLOPT attempts to constrain the subproblem iterations by means of
an initially loose optimality tolerance (we set ω0 =

√
ω∗ for the numerical results).

A potential weakness of this approach vis à vis MINOS is that there is no a priori
bound on the number of subproblem iterations. MINOS’s aggressive (and heuristic)
strategy seems effective in keeping the total minor iteration counts low. This property
is particularly important during the early major iterations, when the current solution
estimates are poor.
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Table 6.6
Summary of results for the 42 selected CUTE test problems

LCLOPT

(MINOS) (SNOPT) MINOS

Optimal 36 34 34
False infeasibility 4 3 3
Terminated by iteration limit 1 3 1
Terminated by superbasics limit 1
Unbounded/badly scaled 3
Final point cannot be improved 1 1 1

Major iterations 400 368 1149
Minor iterations 70476 278162 29021
Function evaluations 59216 57732 53069

It may be possible to emulate the MINOS strategy while satisfying the require-
ment that the subproblem optimality tolerances ωk converge to zero (cf. Lemma 4.2).
For example, LCLOPT might specify a small subproblem iteration limit initially, and
only gradually increase the limit on successive major iterations. Especially during
early major iterations, such a strategy may keep the accumulated number of subprob-
lem iterations small. During later major iterations, the strategy would still ensure
that the subproblem solver returns solutions within the prescribed tolerance ωk.

On the other end of the performance spectrum lies the issue of recovering LCL’s
fast local convergence rate under inexact solves (cf. section 4.2.1). Bräuninger [7]
proves that the quadratic convergence rate of Robinson’s method is retained when
ωk is reduced at a rate O(‖F (xk, yk, zk)‖2) (cf. Theorem 4.10). The first-order KKT
conditions (3.1) for the LCL subproblem can be expressed as

(
∇2Lk(xk) JT

k

Jk

)(
p
−y

)
+ O(‖p‖2) =

(
−gk + JT

kyk

−ck

)
, (6.1)

where pdef
=x − xk, and a first-order Taylor expansion was used to derive the residual

term O(‖p‖2). (We have ignored bound constraints for the moment. Robinson [38, 39]
shows that the correct active set is identified by the subproblems near a solution.)
The nonlinear equations (6.1) are closely related to the linear equations that would be
derived from applying Newton’s method to (3.1) (again, ignoring bound constraints).
In that case, the theory from inexact Newton methods (Dembo et al. [14]) predicts
that the quadratic convergence rate is recovered when the residual error is reduced at
the rate O(‖F (xk, yk, zk)‖). The similarity between (6.1) and the Newton equations
hints at the possibility of recovering the quadratic convergence rate of the LCL and
sLCL methods by reducing ωk at the rate O(‖F (xk, yk, zk)‖). See also Conn et al. [12].
We note, however, that stronger assumptions may be needed on the smoothness of
the nonlinear functions. This issue deserves more study.

6.6. Keeping the penalty parameter small. Preliminary experimentation
reveals that a small penalty parameter ρk can significantly reduce the difficulty of
each subproblem solve. BCL methods require that ρk be larger than some threshold
value ρ̄. In contrast, LCL methods can converge when ρk ≡ 0 if they are started near
a solution (see section 4.10).
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The challenge here is to find a strategy that can keep ρk small or reduce it
without destabilizing the method. A tentative strategy might be to reduce ρk only
finitely many times. This approach does not violate the hypotheses of Lemma 4.2,
and may be effective in practice. A form of this strategy was used for the runs shown
in section 6.

7. Conclusions. The stabilized LCL method developed in this paper is a gen-
eralization of the augmented Lagrangian methods discussed in section 4 and it shares
the strengths of its predecessors: it is globally convergent (the BCL advantage) and
it has quadratic local convergence (the LCL advantage). The `1 penalty function
brings the two together. Because the method operates in a reduced space (like all
LCL methods), it is less sensitive than BCL methods to the choice of each penalty
parameter ρk.

7.1. A second-derivative LC solver. We prove in section 4.4 that the sLCL
method will converge to second-order stationary points if the subproblems are solved
to second-order points (for example, by using a second-derivative LC solver). In
practice, however, a second-derivative LC solver may be most useful as a means of
reducing the overall computational work.

The sLCL method is largely independent of the method in which its subproblems
are solved. An LC solver using second derivatives is likely to require fewer iterations
(and hence less computational work) for the solution of each of the subproblem. We
would expect the number of required major iterations to remain constant if each
subproblem solution is computed to within the prescribed tolerance ωk. However,
we would expect to reduce the number of required major iterations if a MINOS-like
strategy is used to terminate the subproblems (see section 6.5). Over the same number
of iterations, a subproblem solver using second derivatives may make more progress
toward a solution than a first-derivative solver.

Any future sLCL implementation would ideally be flexible enough to allow for
a variety of solvers to be used for the LC subproblems. The choice of subproblem
solver could then be guided by the characteristics of the optimization problem at
hand. In particular, the advent of automatic differentiation makes second derivatives
increasingly available for certain problem classes, e.g., within recent versions of GAMS
and AMPL, and for more general functions defined by Fortran or C code, notably
ADIFOR and ADIC (Bischof et al. [4, 3]). These may be used by SQP and interior
methods for nonlinearly constrained (NC) problems. Certain theoretical challenges
might be avoided, however, by developing specialized second-derivative LC solvers.
Such LC solvers could be extended readily to general NC problems by incorporating
them into the sLCL algorithm.

7.2. Looking ahead (and behind). A Fortran 90 implementation of the sLCL
algorithm, to be named KNOSSOS, is currently under development [21]. As in Robin-
son [38] and the MINOS implementation [34], a key concept is departure from linearity
(meaning the difference between the constraint functions and their linearization at the
current solution estimate xk). For problem (GNP), we define dk and a modified aug-
mented Lagrangian Mk as follows:

dk(x, v, w) = c(x)− ck(x)− v + w,

Mk(x, v, w) = f(x)− yT
kdk(x, v, w) + 1

2ρk‖dk(x, v, w)‖2.
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We then useMk in place of Lk in the elastic subproblem (ELCk) of section 3:

(ELC′′
k) minimize

x,v,w
Mk(x, v, w) + σkeT(v + w)

subject to ck(x) + v − w = 0

x, v, w ≥ 0.

Note that dk(x, v, w) and c(x) have the same value at any point (x, v, w) that satisfies
the (elastic) linearized constraints ck(x)+v−w = 0. HenceMk and Lk have the same
value at such a point. The primal solutions for (ELC′′

k) and (ELCk) are therefore the
same. For points (x, v, w) satisfying the elastic linearized constraints, let ŷk(x, v, w) ≡
yk − ρkdk(x, v, w). Then a solution (x∗

k, v∗
k, w∗

k, π∗
k, z∗k) of (ELC′′

k) satisfies the first-
order KKT conditions

ck(x) + v − w = 0 (7.1a)

g(x)− (J(x)− Jk)Tŷk(x, v, w)− JT
kπ = z (7.1b)

min(x, z) = 0 (7.1c)

min(v, ŷk(x, v, w) + σke− π) = 0 (7.1d)

min(w,−ŷk(x, v, w) + σke + π) = 0. (7.1e)

Now defining

∆y∗
k ≡ π∗

k − ŷk(x∗
k, v∗

k, w∗
k),

we find that (x∗
k, v∗

k, w∗
k,∆y∗

k, z∗k) satisfies (3.1), the first-order KKT conditions for
(ELCk). The multiplier update used in Algorithm 2 (see Step 5) is therefore

yk+1 = yk + ∆y∗
k − ρkc(x∗

k) = ŷ(x∗
k, v∗

k, w∗
k) + ∆y∗

k = π∗
k.

In other words, the new estimate yk+1 is the dual solution of (ELC′′
k). This is exactly

the multiplier update first suggested by Robinson and used in MINOS.
The use of Mk in (ELC′′

k) follows another important aspect of the MINOS im-
plementation for problems in which only some of the variables enter the constraints
nonlinearly. When v = w = 0, the Lagrangian term yT

kdk and the penalty term ‖dk‖2
are both nonlinear in the same variables, whereas ‖c(x)‖2 would be nonlinear in all
components of x.

In retrospect, we see that when the linearized constraints ck(x) = 0 are infeasible,
the MINOS strategy of relaxing those constraints in gentle stages corresponds to
introducing v and w (without the help of σk). However, MINOS continues to define
Mk in terms of dk = c(x)− ck(x) rather than c(x)− ck(x)−v +w, and therefore is no
longer using the true augmented Lagrangian. This explains the increased failure rate
observed with MINOS when the subproblems continue to be infeasible. The sLCL
approach must regard v and w as nonlinear variables within the LC subproblems, but
this is a small price to pay for improved reliability, and the actual nonlinearity of v
and w fades as they become zero near a solution.
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